데이터 준비

  1. 필요한 라이브러리와 데이터 셋 불러오기
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

from sklearn.datasets import load_breast_cancer
cancer = load_breast_cancer()

print(cancer.DESCR)
  1. 각 10개의 속성을 가지는 평균, 표준편차, 최악값들의 pairplot그리기
from sklearn.datasets import load_breast_cancer
cancer = load_breast_cancer()

df = pd.DataFrame(cancer.data, columns = cancer.feature_names)
df["class"] = cancer.target

sns.pairplot(df[["class"] + list(df.columns[10:20])])
plt.show()
  1. 데이터셋 확인하기
cols = ["mean radius", "mean texture", "mean smoothness", "mean compactness",
"mean concave points", "worst radius", "worst texture", "worst smoothness", "worst compactness", 
"worst concave points", "class"]

for c in cols[:-1] :
	sns.histplot(df, x=c, hue=cols[-1], bins=50, stat='probability')
	plt.show()

Untitled

Untitled

Untitled

Untitled