1. 데이터 준비

  1. 필요한 모듈 불러오기
  2. california 데이터셋 불러오고 TARGET칼럼 만들기
  3. 데이터 정규화하기
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

from sklearn.preprocessing import StandardScaler
from sklearn.datasets import fetch_california_housing

california = fetch_california_housing()

df = pd.DataFrame(california.data, columns = california.feature_names)
df["TARGET"] = california.target
df.tail()

scaler = StandardScaler()
scaler.fit(df.values[:,:-1])
df.values[:,:-1] = scaler.transform(df.values[:,:-1])

df.tail()

2. 학습코드구현

  1. 관련 패키지 뽑기
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
  1. 파이토치 텐서 변환
data = torch.from_numpy(df.values).float()

x = data[: , :-1]
y = data[:, -1:]

print(x.shape, y.shape)
  1. 파라미터 설정
n_epochs = 4000
batch_size = 256
print_interval = 200
#learning_rate = 1e-2
  1. 모델 만들기